Independent Career (corresponding authors underlined)

23. Martin, K. E., Mattocks, J. A., Śmiłowicz, D., Aluicio-Sarduy, E., Whetter, J. N., Engle, J. W., Cotruvo, J. A., Jr., Boros, E. Radiolabeling and in vivo evaluation of lanmodulin with biomedically relevant lanthanide isotopes. RSC Chem. Biol. 2023, 4 (6), 414–421. doi:10.1039/d3cb00020f. [html]

22. Mattocks, J.A. Jung, J.J. Lin, C.-Y., Dong, Z., Yennawar, N.H., Featherston, E.R., Kang-Yun, C.S., Hamilton, T.A., Park, D.M., Boal, A.K., Cotruvo, J.A., Jr. Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer. Nature 2023, 618 (7963), 87–93. doi:10.1038/s41586-023-05945-5. [html] Featured in C&E News and News and Views.

21. Park, J., Cleary, M.B., Li, D., Mattocks, J.A., Xu, J. Wang, H., Mukhopadhyay, S., Gale, E.M., Cotruvo, J.A., Jr. Genetically encoded fluorescent sensor for manganese(II), engineered from lanmodulin. Proc. Natl. Acad. Sci. U.S.A. 2022, 119 (51). doi:10.1073/pnas.2212723119. [html]

20. Mattocks, J. A., Cotruvo, J. A., Jr., Deblonde, G. J.-P. Engineering lanmodulin’s selectivity for actinides over lanthanides by controlling solvent coordination and second-sphere interactions. Chem. Sci. 2022, 13 (20), 6054–6066, doi:10.1039/d2sc01261h. [html] Featured in Phys.org.

19. Xu, J., Cotruvo, J.A., Jr. Iron-responsive riboswitches. Curr. Opin. Chem. 2022, 68, 102135, doi:10.1016/j.cbpa.2022.102135. [html]

18. Xu, J., Cotruvo, J.A., Jr. Reconsidering the czcD (NiCo) riboswitch as an iron riboswitch. ACS Bio Med Chem Au 2022, 1, doi:10.1021/acsbiomedchemau.1c00069. [html] Cover article.

17. Dong, Z., Mattocks, J.A., Deblonde, G.J.-P., Hu, D., Jiao, Y., Cotruvo, J.A., Jr., Park, D.M. Bridging hydrometallurgy and biochemistry: A protein-based process for recovery and separation of rare earth elements. ACS Cent. Sci., 2021, doi:10.1021/acscentsci.1c00724. [html] Featured in BBC Interview, C&E News, “Unlocking the lanthanome”, C&E News cover story, ACS Cent Sci First Reactions, Nature Biotechnology highlight, Asia Times, Penn State News.

16. Deblonde, G.J.-P., Mattocks, J.A., Dong, Z., Wooddy, T., Cotruvo, J.A., Jr., Bavarian, M. Capturing an elusive but critical element: Natural protein enables actinium chemistry. Sci. Adv. 2021, 7, eabk0273. [html] Featured in Science, American Nuclear Society, “Unlocking the lanthanome” and C&E News cover story and LLNL and Penn State News Highlights.

15. Liu, S., Featherston, E.R., Cotruvo, J.A., Jr., Baiz, C.R. Lanthanide-dependent coordination interactions in lanmodulin: A 2D IR and molecular dynamics simulations study. Phys. Chem. Chem. Phys., 2021, 23, 21690-21700. [html] Named a “PCCP HOT Article”

14. Deblonde, G.J.-P., Mattocks, J.A., Wang, H., Gale, E.M., Kersting, A.B., Zavarin, M., Cotruvo, J.A., Jr. Characterization of americium and curium complexes of the protein lanmodulin: a potential macromolecular mechanism for actinide mobility in the environment. J. Am. Chem. Soc., 2021, 143, 15769-15783. [html] Featured in Scientific American, “Unlocking the lanthanome”, American Nuclear Society, LLNL news story.

13. Featherston, E.R., Issertell, E.J., Cotruvo, J.A., Jr. Probing lanmodulin’s lanthanide recognition via sensitized luminescence yields a platform for quantification of terbium in acid mine drainage. J. Am. Chem. Soc. 2021, 143, 14287-14299. [html] Featured in NSF, Eos (American Geophysical Union), Photonics Spectra, “Unlocking the lanthanome”, and Penn State News.

12. Mattocks, J.A., Tirsch, J.L., Cotruvo, J.A., Jr. Determination of affinities of lanthanide-binding proteins using chelator-buffered titrations. Meth. Enzymol. 2021, 651, 23-61. [html]

11. Featherston, E.R., Mattocks, J.A., Tirsch, J.L., Cotruvo, J.A., Jr. Heterologous expression, purification, and characterization of proteins in the lanthanome. Meth. Enzymol. 2021650, 119-157.  [html]

10. Featherston, E.R., Cotruvo, J.A., Jr. The biochemistry of lanthanide acquisition, trafficking, and utilization. Biochim. Biophys. Acta, Mol. Cell Res. 2021, 1868, 118864. [html] (Invited review for Cell Biology of Metals III special issue)

9. Mattocks, J.A., Cotruvo, J.A., Jr. Biological, bimolecular, and bio-inspired strategies for detection, extraction, and separations of lanthanides and actinides. Chem. Soc. Rev. 2020, 49, 8315-8334. [html] (Invited review for 2020 Emerging Investigators Special Issue)

8. Deblonde, G.J.-P., Mattocks, J.A., Park, D.M., Reed, D.W., Cotruvo, J.A., Jr., Jiao, Y. Selective and Efficient Biomacromolecular Extraction of Rare-Earth Elements using Lanmodulin. Inorg. Chem. 2020, 59, 11855-11867. [html] Featured in C&E News, Inside the Lab video, IEEE Spectrum, and Seeker.

7. Xu, J., Cotruvo, J.A., Jr., The czcD (NiCo) Riboswitch Responds to Iron (II). Biochemistry 2020, 59, 1508-1516. [html] Featured in C&E News.

6. Cotruvo, J.A., Jr. The chemistry of lanthanides in biology: recent discoveries, emerging principles, and technological applications. 2019, 5, 1496-1506. [html]

5. Ho, J.V., Cotruvo, J.A., Jr. A periplasmic binding protein for pyrroloquinoline quinone. Biochemistry 2019, 58, 2665-2669. [html]

4. Featherston, E.R., Rose, H.R., McBride, M.J., E.M. Taylor, Boal, A.K., and Cotruvo, J.A., Jr. Biochemical and structural characterization of XoxG and XoxJ and their roles in activity of the lanthanide-dependent methanol dehydrogenase, XoxF. ChemBioChem 2019, 20, 2360-2372. [html] Featured in the ChemBioTalents issue and selected as a “Very Important Paper.”

3. Mattocks, J.A., Ho, J.V., and Cotruvo, J.A., Jr. A selective, protein-based fluorescent sensor with picomolar affinity for rare earth elements. J. Am. Chem. Soc. 2019, 141, 2857-2861. [html] Featured in a JACS Spotlight and a Penn State news story.

2. Cook, E.C., Featherston, E.R., Showalter, S.A., and Cotruvo, J.A., Jr. Structural basis for rare earth element recognition by Methylobacterium extorquens lanmodulin. Biochemistry, 2019, 58, 120-125. [html] Featured in C&E News and Nature Chemical Biology.

1. Cotruvo, J.A., Jr., Featherston, E.R., Mattocks, J.A., Ho, J.V., and Laremore, T.N. Lanmodulin: A highly selective lanthanide-binding protein from a lanthanide-utilizing bacterium. J. Am. Chem. Soc. 2018, 140, 15056-15061. [html] Featured in C&E News and Nature Chemical Biology.

Prior to Penn State

13.  Krishnamoorthy, L.,* Cotruvo, J.A., Jr.,* Chan, J., Kaluarachchi, H., Muchenditsi, A., Pendyala, V.S., Jia, S., Aron, A.T., Vander Wal, M.N., Guan, T., Smaga, L.P., Farhi, S.S., New, E.J., Lutsenko, S., and Chang, C.J. Copper regulates cyclic AMP-dependent lipolysis. Nat. Chem. Biol. 2016, 12, 586-592.  (*Denotes equal contribution)

12.  Aron, A.T., Ramos-Torres, K.M., Cotruvo, J.A., Jr., and Chang, C.J.  Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems.  Acc. Chem. Res. 2015, 48, 2434-2442.

11.  Cotruvo, J.A., Jr., Aron, A.T., Ramos-Torres, K.M., and Chang, C.J.  Synthetic fluorescent probes for studying copper in biological systems.  Chem. Soc. Rev. 2015, 44, 4400-4414.

10.  Cotruvo, J.A., Jr., Stich, T.A., Britt, R.D., and Stubbe, J.  Mechanism of assembly of the dimanganese-tyrosyl radical cofactor of class Ib ribonucleotide reductase: Enzymatic generation of superoxide is required for tyrosine oxidation via a Mn(III)Mn(IV) intermediate.  J. Am. Chem. Soc. 2013, 135, 4027-4039.

9.  Cotruvo, J.A., Jr. and Stubbe, J. Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study. Metallomics 2012, 4, 1020-1036. 

8.  Boal, A.K., Cotruvo, J.A., Jr., Stubbe, J., and Rosenzweig, A.C.  The dimanganese(II) site of Bacillus subtilis class Ib ribonucleotide reductase.  Biochemistry 2012, 51, 3861-3871.

7.  Cotruvo, J.A., Jr. and Stubbe, J.  Class I ribonucleotide reductases: Metallocofactor assembly and repair in vitro and in vivo.  Annu. Rev. Biochem. 2011, 80, 733-767.

6.  Cotruvo, J.A., Jr. and Stubbe, J.  Escherichia coli class Ib ribonucleotide reductase contains a dimanganese(III)-tyrosyl radical cofactor in vivo.  Biochemistry 2011, 50, 1672-1681.

5.  Stubbe, J. and Cotruvo, J.A., Jr.  Control of metallation and active cofactor assembly in the class Ia and Ib ribonucleotide reductases: diiron or dimanganese?  Curr. Opin. Chem. Biol. 2011, 15, 284-290.

4.  Boal, A.K., Cotruvo, J.A., Jr., Stubbe, J., and Rosenzweig, A.C.  Structural basis for activation of class Ib ribonucleotide reductase.  Science 2010, 329, 1526-1530.                                                                                                                           

3.  Cotruvo, J.A., Jr. and Stubbe, J.  An active dimanganese(III)-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase.  Biochemistry 2010, 49, 1297-1309.

2.  Cotruvo, J.A., Jr. and Stubbe, J.  NrdI, a flavodoxin involved in maintenance of the diferric-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase.  Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 14383-14388.

1.  Stubbe, J. and Cotruvo, J.A., Jr.  Ribonucleotide reductase: recent advances.  In Handbook of Metalloproteins, ed. A. Messerschmidt, Wiley (online).  2008, doi: 10.1002/0470028637.met229.  http://onlinelibrary.wiley.com/doi/10.1002/0470028637.met229/abstract.